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Consistent values for the fundamental dimensional coupling constants of hadrons to their valence quarks are
determined from large-momentum-transfer elastic scattering, photoproduction, form factors, and momentum
distributions. %'e then show that the constituent-interchange-model hard-scattering subprocesses Mq ~Mq
and Bq ~ Bq (and their crossing variants) are of suAicient magnitude to account for the normalization as
well as the kinematic behavior in pT, angle, and s of single-particle large-transverse-momentum inclusive

cross sections. The crossover point where pT
' scale-invariant qq-~qq and gluon terms may dominate the

cross section is computed. Jet cross sections and charge correlations are also discussed. %'e also give analytic
formulas for inclusive cross sections in general hard-scattering models. Spectator and dimensional-counting

rules are given which determine the scaling behavior in pr, e = M '/s, and 8,

I. INTRODUCTION

In the last few years the phenomena. of high-
transverse-momentum physics have become an
important tool in unraveling the internal structure
and basic interaction mechanisms of hadrons. At
the quark level, two competing mechanisms have
been intensively studied: quark-quark scattering
and constituent-interchange mechanisms involving
quark-hadron vertices only, such as qM-qA~I.
Both mechanisms are capable of producing parti-
cles at high t.ransverse momentum. The 90' inclu-
sive cross sections are predicted to be of the form
(c ==%'/s = 1 —xr)
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if one assumes an underlying scale-invariant theo-
ry. For Pz smaller than 8 GeV/'e, the Fermilab"
and CERN ISR' data indicate that the pz

' behav-
ior is not present, whereas, the pz

' behavior and
values of F' predicted by the constituent-inter-
change model (CIM) appear to describe the cross
sections for meson production. (For example, the
quoted fit to the C hie ago- P rinceton data' for pp
-v+X at I9, =90' gives P~~'&'o; the CIM pre-
diction is p~ '&' from quark-meson scattering. )
The first discussions of inclusive production of
mesons at large transverse momentum were given
by Herman and Jacob, and Herman, Bjorken, and
Kogut, " who argued that scaling in electromagnetic
processes must lead eventually to scale-invariant

P~
' behavior at fixed x~. The CIM,"' on the other

hand, was developed in order to explain exclusive
scattering at low energies. When applied to inclu-
sive scattering, it predicts that the numerically
dominant terms from quark-meson scattering
should behave as p~ '. This result was based on a
fundamental scale - invariant quark-quark inte rac-
tion which will eventually produce a p~

' behavior
unless it is very strongly suppressed. In this pa-
per, we shall reconcile these mechanisms by
studying the relative normalizations of JIM dia, —

grams and the quark-quark-gluon contributions.
The absence of P~

' terms in the meson yields
has led quark-scattering advocates to consider
two modifications to the scale-invariant qq -qq
cross section, chosen so as to yield approximate
I/pr' behavior. One approach is to assume scale
breaking in the structure functions and the quark-
quark amplitude. ' Alternatively, scaling can be
preserved in the distribution functions, a,nd the
quark-quark cross section can be chosen to fit the
data [in the manner of Field and Feynman (FF)].'
These approaches share several difficulties:

(a) Elastic fixed-angle cross sections at large pr
cannot be described using the same basic qq - qq
subprocess employed for inclusive predictions (see
Ref. t for details).

(b) In quantum chromodynamics (@CD) models the
standard value for the gluon coupling constant
(o.', 0.3) gives -a cross section an order of magni-
tude below the data for p~ ~ 5 GeV. In the FF mod-
el the quark-quark cross section is fitted to the
form do/dt(qq qq)=C/st', where C = 6 x 10' GeV'
which seems uncomfortably large. We note that the
form 1/st' or I!su' is exactly that predicted for the
qM-qM subprocess, and is in fact characteristic
of spin-& exchange, not vector exchange.
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(c) In the FF model the pr "behavior for proton
production' is not accounted for. One can appeal to
"leading-particle" effects, but then one is some-
what embarrassed by having to omit them in esti-
mating meson yields from pion beams.

(d) In models with quark (or gluon) fragmentation
into the observed hadron, the away-side jet is
forced to carry transverse momentum of order
20% in excess of the trigger P~. Reconciling this
with experiment may require very large trans-
verse-momentum fluctuations in the hadronic wave
functions.

(e) Models based on quark-quark scattering gen-
erally predict no correlations between the charge
of the trigger particle and the charge of particles
in the away-side jet. Howeve r, striking correla-
tions for high p~ K and p triggers have been ob-
served by the British-French-Scandinavian (BFS)
group at the ISR." We also note that there is no

theoretical justification of employing a factorized
form for scale violations in the asymptotic-free-
dom-type model, and the actual predictions for a
model such as QCD are not known unambiguously.

In principle there could be scale-breaking cor-
rections of the asymptotic-freedom type to the di-
mensional-counting rules and the CIM forms for
the quark-hadron amplitudes. However, the basic
scaling prediction for the proton form factor
f'F~(t)- const appears to hold within -5% accuracy
for 4&

~

I ~& 36 GeV', suggesting that amplitudes in-
volving color-singlet hadron vertices may not have
strong QCD corrections. " Consequently or~r a~zal-
ysis here ulill be restricted to a strictly scale-free
theory.

As we shall review here, the dynamical forms
and the quark counting predictions based on CIM
subprocesses are in good agreement with experi-
ment for all produced particle types. The uncer-
tainty in the CIM approach has always been in the
absolute magnitude of the various contributions.
We will show that the normalization of the experi-
mental inclusive cross sections is in reasonable
agreement with theoretical expectations based on

form factors, structure functions, and 90' elastic
scattering measurements at low energies. We

shall predict which subprocesses should dominate
production of a given particle in a given kinematic-
al regime. Our normalizations will be seen to be
inherently uncertain by factors of 2 or 3; however,
predictions for certain cross-section ratios have
much less uncertainty.

In a purely scale-invariant theory, the dominance
of the CIM diagrams over qq -qq contributions in
the thoroughly explored experimental regime p~ & 8

GeV/c is in fact expected if the conventional value
of o. ,~ 0.3 is used (see Sec. IX). In part, this is
because the trigger hadron can be formed directly

II. CATALOG OF EXPERIMENTAL RESULTS

We will parametrize fixed-angle (90' center of
mass) exclusive two-body cross sections at large
s in the form

do'

dt 9O.
(2.1)

A review of the relevant data is given in Ref. 7.
We employ throughout this paper pure GeV units.
Inclusive large-p~ cross sections at 90' center of
mass from Fermilab" and the ISR" can be fitted
to the form (e = 1 —2Pr its = 1 -xr)

IeP( 2)M T
d3p PT

2&pr & 8 GeV/c
(2-2)

Table I summarizes the values for I, N, I', and E,
n for the various well-known cross sections of in-

in the hard-scattering CIM subprocess. Quark-
quark and gluon scattering is predicted to become
dominant for pr Z 8 —10 GeV/c and will be an im-
portant contribution to jet-trigger experiments at
much lower values of p~.

Briefly, the organization of the paper will be as
follows:

In Sec. II, a short summary and catalog of ex-
perimental results for elastic and inelastic high-
transverse-momentum cross sections and a dis-
cussion of trigger bias will be given. In Sec. III,
we present a review of structure functions and re-
lated sum rules, general formulas for elastic and
inclusive cross sections, and the various contri-
buting CIM subprocess forms. Also, coupling con-
stants are precisely defined. Section IV presents
the determination of certain important coupling
constants from elastic scattering measurements.
In Sec. V, the determination of the above coupling
constants from the behavior of structure functions
is made and their consistency with the results of
Sec. IV is noted. In Sec. VI, inclusive cross sec-
tions for proton bea)»s are described in detail
for many different particle yields ~ Antiproton
beaI»s are briefly discussed. Section VII presents
a discussion on inclusive cross sections for a bio»
bea»i. In Sec. VIII, the inclusive-exclusive con-
nection is examined. In Sec. IX, inclusive cross
sections based on q~~ark- quark s cat terz&zg are com-
puted. We discuss jet-jet cross sections in Sec. X,
and in Sec. XI ant." XII a general discussion, a few
remarks, and some conclusions are given.

A check of our analytical approximation is made
in Appendix A. A detailed discussion of the defini-
tion of the quark-hadron coupling constants and
their determination from the asymptotic behavior
of the meson and nucleon form factors is given in
Appendix B.



R. BI.ANKENBECLEH. . S. J. BRODSKY, AND J. F. BUNION

TABLE I. Parameters for cross sections [see Eqs.
{2,1) and ('».2)j in pure GeV Units.

(xa) '"- ( l.l two-body resonance,

Pf -Pf»
7f 'I» Ti P
~ p —7(. ou

fp Tr gg

.Re at't ion

PP--7; ~ I
pp -K'X

~'p —~~X

'». 0 x 105
'». 5 x 10
2.6 x 10

{9,8, 7)
5
500
3.5

1.2 three-body resonance

(calculated using the local-exponent approach of
Eilis et rrl. ),"we obtain conditions for the fraction
of events that are prompt, tmo-, and three-body res-
onances;

fo+f, +f, = 1

f~+ 1.1f2+ 1.2f, = 1.1 .

Assuming that f,-f„weestimate for pions

terest. For X and E we have chosen the nearest
&&leger values, and then fitted the normalization
constant I. The reactions Pp —KX or pX near 90'
are characterized by the following behavior:

E, (pp-K X)
-1 0&' '

l(TE—,(pp-K'X)
p

(2.3)

F, (pp -pX)d'p
dw

& —, (pp-pX)dp

~ 0 3~6o9%2o'$/ ~ 2')lo*1klo3 (2 4)

The y//v' ratio in pp collisions is reported to be as
high as 30 jo, '"' The v'p-v" form quoted in Table I
uses the measured ratio rr'p -rr'/pp- rr' from Don-
aldson et al. '

In the case of the inclusive cross section, it is
important to establish the percentage of trigger
particles which are "prompt, " as opposed to those
which arise indirectly from a, decaying high-p~ re-
sonance or virtual state. This percentage is roughly
determined phenomenologic ally by examining the

xE distribution

( p r )oooos r to

( pr)r, r..., (2.5)

where xE measures the distribution in transverse
momentum of a hadron produced in the hemisphexe
opposite the trigger pion. If the trigger ~ is
"prompt'* then the maximum value of xz is 1,
whereas when it is the product of a resonance (or
fragmentation process) then (xs) ~& 1 —the parent
system (and hence the balancing away-side system)
must ca.rry more p~ than the trigger pion. The
data'" appear consistent with a mean value

((X )o|o.x)

Using

Allowing for transverse-momentum fluctuations of
the initial participants in the high-p~ subprocesses
results in a slight decrease in f~ This . type of ra-
tio (which is important for the estimate of jet
cross sections as d:scussed in Sec. XI) is expected
theoretically if prompt spin-1 mesons ( p, K, . . . )
are produced (with the statistical weight) three
times as frequently as prompt pions. This yield
is consistent with the experimental ratio'"'

p/v - I

iff~- ~ and f~- I, which might be expected since
the p's are expected to be produced indirectly by
far fewer lom-mass resonances. The normaliza-
tion calculations in the CIM will be shown to be
consistent with the prompt/total ratio of the order
50+ 20/0 (see Sec. VI).

The above estimate for f~ is for a rr trigger.
Fewer K's are produced indirectly (especrally by
two-body decay), so we anticipate a somewhat
smaller total, ~prompt ratio for K's. These ratios
can certainly be determined by same-side correla-
tion measurements. This mill remove the neces-
sity of making such rough estimates of f~ and thus
will provide more stringent tests of models.

III. STRUCTURE FUNCTIONS AND CROSS SECTIONS

In this section we mill present general. formulas
applicable to the particular reactions discussed in
later sections. We will use the standard form of
the hard-scattering models, where k~ integrations
have already been performed. "' The large-p~
cross section is then given by a convolution of
structure functions G,&„(x)and G»a(x), with the
sum of all contributing ha.rd-scattering subprocess-
es 8+5 c+d.

A. Structure functions

We begin by distinguishing between the full prob-
ability function G,&„(x)[for finding a particle or
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system a with light-cone fraction x = (p, +p, ')/
(p'„+p„')(p~r = 0, p„'&0) in particle A] and its val-
ence part G, t„(x)arising from the simplest valence
Fock space component (2 or 3) quarks of A. Note
that the complete structure function G, &„hasthe
usual x "' Regge behavior, whereas the valence
components vanish at x- 0. In this paper we define
valence quarks to refer to quarks belonging to the
minimal Fock state component, and which give the
leading behavior as x-1. We refer to the higher
Fock components as the sea.

We constrain the G's to satisfy the spectator
counting rules' as x- 1 (see Sec. XI) and to have a
reasonable shape for small x (i.e. , some flattening
off in xG). A form (Fig. 1) with these properties
which yields simple integrals in later calculations
1s

a/A N 4/A)

u/p
d/p

q/p
(2q)/p
M/p
Z/p
a/p
q/~
q/~
M/z

0.2
0.2
0
0.6
0.3
0
0.3
0.3
0.3
0.4

0.1
0.067
0.01
0.1
0.1
0 ~ 024
0.12
0.083
0.083
0.1

1.22
1.22
1

1.6
2.4
1

1.6
1.1
1.1
2 ' 1

TABLE II. Distribution-function parameters (per
color).

xGa/p(x) = (1+ga)fa/gN(a/A)(1 —~) ( ' va)'

xG, t„(x)= (1+g, )f, t„N(a/A)(1 -x)", x &x,

xG, t~(x) =(1+g, )f, t„N(a/A)(1 -x, )~~, x&x, f~yp= o 4 f~fp ——0.7 Q fut, =—0.8

where

g, = 2n(aA) —1

(3 1)
Q f tp

——017
q

Q f t~= 0.03-

f(2 ) /p

(2q)

Q f t, =Q f t, = 0.083-

and n(aA) is the minimum number of quarks in the
spectator system. We emphasize that the form
(3.1) is only to be used in integrands and does not
represent the true shape of the structure functions.
The quantity f,&„is the fraction of total momentum

M/p

carried by a in A,
l

f, t„—— dx xG, t „(x)
0

and

N(a/A)= [(1 -x, )g~(1+g,x,)]-'.

(3.2)

(3 3)

O.

0
C9
x

0

As an example, reasonable values for u or d
quarks in a proton are g, =3 and x, =0.25. N(a/A)
adjusts for the shape dependence of the structure
function relative to a. pure (1-x) power and ap-
proaches 1 as x, - 0. Throughout this PaPer if "a"
refers to a quark, it will be a quark of a given
colo'. By way of reference, the distributions mea-
sured in deep-inelastic electron scattering are
color sums

(3x

FIG. 1. (a) A schematic of the simplified structure
functions used to estimate rates in the text. (b) The
manner in which the higher Fock states enter to produce
the total structure function.

vW(x)= g agxG„t,(x)+ ~ ~

colors

= 3 x&xG (x) ~ ~ ~ .tt /0

For simplicity, we take G„&&~G«» but different
distributions could be assumed. "

We will give general formulas for inclusive cross
sections in terms of the parametrization (3.1); to
give absolutely normalized numerical results we
adopt the set of "standard" values given in Table
II. Again we emphasize that these values are to be
used with the simplified form (3.1) inside inte-
grals; the parameters are chosen to yield reason-
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able integral properties consistent with usual
structure functions. These are taken from experi-
ment when possible and otherwise estimated in
Sec. V by utilizing the convolution formula

(3.4)

Note that to avoid double counting one of the G's
must be "irreducible, " i.e. , a valence distribution
function, and the sum, &, is restricted to non-
overlapping intermediate particle states (n) having
no quarks in common. A simple integration yields

I
V

fazt'A = ~ falnfnla ' (3.5)

B. Elementary exclusive cross sections and coupling definitions

In a scale-invariant theory all exclusive differen-
ti.al cross sections at large momentum transfers in
the fixed-angle regime can be written as a sum of
terms of the form

QcT

df
~ &T U zz( I) T( )w-- (3.6)

The value of x, in (3.1) which controls the flatten-
ing of xG(x) is in general expected to be less than
the position of the "quasielastic" peak in x for the
valence component of interest. This tends to take
into account the contributions of the higher Fock
states. This is illustrated in Fig. 1. For example,
for G„&~, the most likely valence value of x is 3 and
we choose x, =0.25. The resulting form for G„&~is
close in character to the data. For G~&~, a baryon
such as A or ~z must arise from at least the five
quark wave-function component of the proton and
hence the most likely "valence" value of x is 5.
We chose x, =0.4 for this case. Our final results
depend only weakly on the values chosen for x, .

da S2+ t2—(dp -dp) ~—
dt s' f. 'u4 (3.8)

In the diagram of Fig. 2(b) the upper vertex is not
uniquely associated with either the initial or the
final proton and for simplicity we discard it; its
cross-section contribution

space wave function and g, is the colored-gluon-
spin-&-quark coupling. A careful discussion of the
definition of g and $(0), including the effects of
spin, is given in Appendix B.

(ii) We also define the constant h/v 3 for the cou-
pling of the proton to its valence state, d+ (wi~), for
applications where the (zzzz) system has a finite
range of invariant mass. The coupling is defined
for a d quark with one specific color.

For simplicity we shall assume SU(3) symmetry
for the couplings throughout this paper, although
we expect that some breaking may be present.

The two most important cross-sectibn prototypes
for CIM applications are as follows:

(i) The process uzz'-uzz' where u. has a given
color. The cross section is given in Table III. The
only contribution from the valence state is the (zzt).
topology diagram where the d quark gives a pole in
the s~ channel. 'The spin-averaged cross section is
characte rized by N = 4, T = 0, U = 3, and S= [(I/3)
x (g'-/4zz)]' for the spin average cross section.

(ii) The process diaz-dp, for which all Born dia-
grams in a renormalizable theory yield N = 6, i.e. ,
Pz "behavior. In the CIM it is assumed that the
most important diagrams are those in which the
gluon exchanges are internal to the hadron wave
functions. Two examples are shown in Fig. 2.
Diagrams in which gluons are exchanged between
quarks of different hadrons are not enhanced by the
strong bind'-ng effects of the wave functions. The
first diagram, Fig. 2(a), which we adopt as our
standard form, yields (for spin--,' quarks)

2

g g, 'l(0) = (2') ~ & i(&)tz (3.7)

where g is the full Bethe-Salpeter momentum-

where & contains the relevant coupling constants.
This parametrization is appropriate for general
processes involving quarks, gluons, and hadrons.

There are two critical coupling constants for
quark-hadron scattering which we now define.
These are appropriate ones when at least one of
the quarks involved is off-shell:

(i) The coupling of a meson to its simplest val-
ence two-quark component. We define a standard
coupling, g/v 3, of the zz' to a u and d quark of ozze

color. The I/v 3 gives the correct normalization
upon summing over colors. In QCD, g is propor-
tional to the wave function at the "origin"

+8CC-
Sz 52@2 (3.9)

is sufficiently similar to that from Fig. 2(a) that
our results are not sensitive to this assumption.
The other processes of Table III involving baryons
are determined by crossing from the Fig. 2(a) re-
sults. These quark spin-& results for dP -dp lead
to an angular distribution for elastic pp —pp scat-
tering which is in excellent agreement with experi-
ment as will be demonstrated below. Defining
standard values

(3.10)

we give in Table III the cross-section forms for
all elementary processes of interest for quarks in-
teracting with J = 0 mesons and J = 2 baryons.
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TABLE III. Elementary CIM subprocesses (spin and color averaged)

= —x 5K
dt s~

Subprocess Subprocess

M M

qM —qM (ut) ~ aM

M M

qM —qM (st) ) ( aM

q q

PP

dd pp

q B

((.'.

q B

B

2 s2+ 2s u

s2t4

2 s2+ t2
B 2U4

qq —MM
u

dp —pd

8
2 t2+ u2's „z,~

q

2, Xq Xq
Mq —yq'(Ut) 2aaM —is +u i —--—

M i U s
dp —pd

q B

B q

2 s2+u2
B U2t4

M

yq —Mq' (ut) aa —(s +u J
———

M t, u s
q q'

B B

dp —dp (ut) ~ as z +

M

q(2q) —MB ( 2&B&M&D

(2q) B

M B
(2q}M —Bq B M 0 5

U

(2q) q

One should take special note that the yq-Mq
cross-section form given in Table III incorporates
three additional diagrams, other than the one

dra.wn, as required by gauge invariance. All cross
sections are those for quarks or diquark systems
of one given color. 'The spin-& quark spin-1 vector
gluon structure of QCD is reflected in the tabulated
results. For instance, the qM- qM cross section
in a scalar quark Q' model is proportional to
1/s', .i' instead of 1tsv' as found for spin--, quarks.

C. Exclusive and inclusive hadronic cross sections

Fxclusi ve processes

The exclusive scattering process AB-CD [see
Fig. 3(a)j can be considered as the scattering of
A- C off a quark constituent of the target B. Since
the constituent in general has some fraction x of
the target momentum, the basic subprocess occurs
at a reduced energy and one readily shows from
this quark-interchange diagram that

—(AB CD}=Fsp-'(t)N„„' (Aq —Cq; s' =(—x)s, t' = t, u'=(x)n)+ permutations(A, C —B,D), (3.11)

where the mean-value theorem has been used to
replace x by (x). Note that F»(t) is the full transi-
tion form fa.ctor of the target (summed over attach-
ments to quarks of all colors) whereas d&/dt is, as
always, the cross section for a quark of one given
color. X

„

is the number of coherently interfering
diagrams which contribute. Using the standard
form for do/dt, Eq. (3.6), defining n = 4+N, and

taking Fs(t) = (1 —t/37v') ' for a proton target, we
obtain at large s

s" —E (AB CD) v&(x) r sy '2 +r+v(M )'-da.

dt coh V
90

(3.12)

which is consistent with dimensional counting. '
One expects that (x) ) —,

' should characterize scat-
tering from a valence component of the proton tar-
get.

Inclusive processes

From Figs. 3(a) and 3(b) it is apparent that the
di~ect inclusive process, AB-CX, in which the
beam does not radiate prior to interacting with a
constituent of the target, is obtained from the pre-
viously quoted exclusive scattering formula by re-
placing the form factor by the relevant target
structure function. A simple calculation then leads
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to the result

(48-CX) = — -3+ xG»s(x) (A—B -Cd', s' =xs, t' =t, u'=xu).dg 1 s dg

C b, d
(3.13)

The sum of b, d is over quark flavors and the expli-
cit 3 results from the sum over colors. The struc-
ture function G and do/dt are for quarks of one
given color. The variables used to describe inclu-
sive scattering subprocess cross section A +B-C
+X are

teracting constituents. In the above formula,

I(a, b) = &f,&„f~&s N(a/A)N(b/B) 2r "r

I'(2+g, ) I'(2+g )
I'(2+ g, +g, )

(3.19)

s+ t+u=K' = &s,

where% is the total missing mass and

x~ = u/s = z-xs(1 + z) q

x, = -f/s = —,'x„(1—z),
where

= I —E™/E™.
R~ R

(3.14)

The main dynamical behavior is contained in the E
function

K(F,N&F+, F ) =—&r(P '+iaaf) "(1+xsz) z

x(l x„z)r . (3.20)

Note that the effective power of e = (1 —xs) changes
as one apPxoaches z =+1. For an extension of this
result to final-state decays, see Sec. IX, Eq. (9.7).
In the above

and z(= cose) is the cosine of the center-of-mass
scattering angle. The on-mass-shell condition for
particle C determines x in Eq. (3.13) to be

F= 1+g +gbq

F'= I+ U+g, —N, (3.21)
x=x, (1 —x,). (3.15)

For x&xb one may substitute the simple forms for
G~& s and do/dt from (3.1) and (3.6) and obtain

Ec, =3K) (1+g~)f~)sN(b/B)x," v
d ~C, d

F = 1+ T+gb -N.
We have found that the function J(e, z) is slowly
varying in e and z for e & e = 1 ——,

' (x,+ x,) and
~

z
~

away from 1. In this region, it is given by

x(1 -x,)" ~' '~K(g„N), (3.16)

K(F&N) —= er(Pr'+M') s, (3.17)

where the dominant dynamical variation in & and p ~
is contained in

1 1+xRz+&g
~(e, z) =—

I ~n(I+n)"(I n)'&- 1+xRz

1 —xRz —qg'
X

1 —xRz
(3.22)

Ec, = 3 g f(a, b)K(F, N; F ', F )J(e, z) .
PC a, b

(3.18)

Here we have employed (as appropriate for all our
CIM applications) the presence of one quark-loop
color sum. The sum is over the flavors of the in-

and the effective mass scale M is less than -1 GeV.
The double-bremsstrahlung process depicted in

Fig. 4 is easily evaluated using the G functions and

do/dt forms already discussed. The result can be
written in the form

with

Jo = dq(1+ q)~~(l —q)~o

Clearly J(0,z) =1. In our estimates we set J= 1,
giving errors at most of order 20% for «z except
near the very forward or backward directions for
highly asymmetric processes (g, »g, ) where the

(b)

FIG. 2. Two examples of graphs that contribute to
quark-proton sc attering.

(b)
FIG. 3. (a) Typical exclusive scattering contribution to

MB-MB arising from constituent interchange. (b) The
corresponding inclusive direct process for MB -MX
illustrating the simple connection to the structure func-
tion.
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FIG. 4. The double-bremsstrahlung contribution to the

prompt inclusive rate for A+B —C+X. The hard-scat-
tering contribution for the cross section is given in
Eq. g.~.

mean value approximations break down. The ac-
curacy of this approximation is tested in Appendix
A. The effective I' power is found to decrease for

~a a'

For later use it is also convenient to define a K
function that is symmetric in z,

K,(F, N
&
F",F ) = ~ [K(F,N; F ', F )

+K(F, iV;F, F')]j, (3.23)

which occurs in target-beam-symmetric (proton-
proton) reactions.

coherent diagrams as illustrated in Fig. 5. The
dominant term for the basic qp-qp scattering
process is given in Table III and we obtain

E(pp -pp) = w n s a (x') N
p
2"Mv . (4.4)

Experimentally E(pp -pp) = 1.2 x 10' (see Table &)

and, using (x) & —,', as before, one finds

u~&10 GeV . (4.5)

The CIM prediction for the quark-proton sub-
process can be checked by examining the angular
distribution of the pp elastic cross section about
z = cos 8= 0. The cross section predicted by Eq.
(3.11) can be characterized by the form

FIG. 5. The various coherent contributions to elastic
proton-proton scattering and their respective weight-
ings.

IV. DETERMINATION OF COUPLING CONSTANTS

FROM FIXED-ANGLE ELASTIC SCATTERING

dCrPP PP
HAPP

~ PP

(s, 0) = (1-z') ', (4.6)

In this section we determine the coupling con-
stants ~„and o. ~ from relatively low-energy fixed-
angle elastic scattering data. The values for n~
and n~ will be used later to compute the normal-
ization of high-p~ inclusive cross sections for the
CIM subprocesses. First, consider the predicted
forms for photoproduction of pions and pion-nu-
cleon and elastic scattering. Using the cross sec-
tions of Table III, with A.-, =-,', A.,=-', for yu-z'd,
we obtain from Eq. (3.12}

E(yp - w 'n) = v n n „-', (x)
' 2'Mv,

E(~p-zp)=vn,'(x) 2'M,'.
(4.1)

(4.2)

n„/(x)'=30, (4.3)

which for (x) = 4 gives ns ~ 2 GeV'.
Now consider pp elastic scattering; there are 10

The experimental data are consistent with' the
predicted power laws in s. The normalization
factors from Table I are

E(pp —v p) = 2 x 10',

E(yp —z =1.3 x10E(zp-v p)

These determine n„/(x)' in two independent ways.
The effective number of coherent diagrams con-
tributing to pp-gp is between 1 and 2. A consis-
tent solution for both (4.1) and (4.2) is

which is in good agreement with the experimental
distribution. " The above form of do/df yields an
effective trajectory, n(t), which approaches -1
as t becomes large. " This can also be checked by
a triple-Regge analysis of pp-P+X at large t.
%e can also compute the ratio of the pp to pp cross
sections at 90 by crossing the predicted pp form
of Eq. (3.11). The CIM prediction for this ratio
at 90' is

df (PP-PP (pp —pp) = 85, (4.7)

independent of s and 8 . The data" for np-np
and pp-pp fit the s "f(e ) form with n=10.40
+0.34 and n=9.81 +0.05, respectively, and the
ratio appears to be independent of angle. These
data also give R =0.34+0.05 for 10&s(24 GeV',

=90 . Finally, we point out that the predicted
form for zp and KP elastic scattering can be

which should be compared to the experimental
ratio" of roughly one hundred. Models based on
gluon exchange tend to give ratios of order 1. In
the case of np-np, there are eight rather than ten
coherent diagrams, which give a predicted ratio
at large angles (recall the factor of 2 for pp}

d 0'
(np -np)

R= =—0.32,
«(pp-pp)
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crossed to the reaction PP —m '7[ and pp-K K .
The resultant normalization and angular distribu-
tions are in reasbnable agreement withthedata. '""

V. DETERMINATION OF COUPLING CONSTANTS

AND MOMENTUM FRACTIONS FROM MOMENTUM

DISTRIBUTIONS

In this section we will use the valence distribu-
tion functions derived from deep-inelastic scatter-
ing and e'e reactions to determine the quark-had-
ron coupling constants g and h. The valence part
of the meson probability function is easily com-
puted from the diagram of Fig. 6(a) with the result

G,'„(x)= G„', (x)

2

d kr, x(1-x)[kr'+M (x)] '
r62v'

1 g2 x(1 —x)
3 16v2 M2(x)

(s.l)

where

M'(x) = (1-x)m„2+xm~ —x(1 —x)m„'

=m, '-x(1 -x)m, '.
We remind the reader that G„&,+ is the distribution
Per color of quarks of flavor type u. Taking m, '
&m 2, then M2(x)=m, and is essentially constant,
so that the peak of Gr(x) is at x- —,. The valence
component of G is unimportant at small x&0.5,
but it becomes dominant because of the slow (1 —x)
falloff at large x. The e'e annihilation data for
single-pion production provides a direct measure
of the quark-color-average (i.e., per color) dis-

tributions G,+«and G,,&„.For x-0.8 we expect
that only the valence components are important,
and that the crossing relation G,+&~(x) G~r&~(x) is
valid for x near 1. Using the x-0.8 data from
SPEAR' we can estimate the coefficient of x(1 —x)
and obtain the upper bound

1f;„,=f„„.=
t

dxxG„'„.(x)& —,', ,
0

(5.2)

in reasonable agreement with the more detailed
fits of Ellis et al.2' By integrating Eq. (5.1) we

find

o! =— — = 48mm f1 g 2 V
M 3 4& q u/ 0' (s.3)

For f„&„=—,', and m, -500 MeV this yields nM =1.25
GeV, in approximate agreement with the previous
estimate of Sec. IV. (Note that m, must be greater
than m~/3 for stability of the proton in our simple
model in which m, is the effective or dynamical
mass of the quark. ) We will adopt n„=2GeV2 as
our canonical value.

A similar calculation may be performed for the
nucleon structure function. Evaluating the valence
diagram of Fig. 6(b), we obtain

C' ( )= dD' d'k
& 4Mq2 6(2v)' [k, '+M'(x)]' '

(s.4)

where, in this case

M2(x) = D2x+ m, '(1 —x) —x(1 —x)m~', (s.s)

and D is the mass of the diquark system. Neglect-
ing the D' dependence of h yields

3
1 k' 1 (1-x)
3 16x 6 [(1y 3x)M x(1 x)M ']

(5.6)
M(p)

9 (q) p —k

M(p)
The weak x dependence of the denominator can be
neglected and G, & ~ takes the approximate form at
large x

G,"q (x) =- 20f r( (1 -x)', (5 7)

B(p)
~raaaiZrrXir. 'aZZ~~

I h
(2q) p —k

z: zx ri zsxzzzn~

EI (p)

FIG. 6. The momentum routings and the couplings
constants used to compute the valence contributions to
the (a) meson and (b) baryon structure functions and

sum rules.

where f,&~ is the fractional momentum carried by
a valence quark of a given color. The above coef-
ficient may be estimated from deep-inelastic scat-
tering data for x-0.75 yielding f &s

——(3)0.12=0.04.
Note the similarity of this fraction to that deter-
mined in the meson case. The correct inclusion
of the color factor is essential in obtaining similar
valence momentum fractions for mesons and bary-
ons. Using ni, =500 MeV, as before, and thus
(1+3x)m,'-x(1 —x)m ' ~0.4 GeV2, we determine
&s—:~(k'/4x) —= 10 GeV~ in satisfactory agreement
with the estimate obtained from elastic PP scatter-
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fZ/Mfhf/0 fj//, s (5.8)

where the M sum runs over those nonoverlapping
mesons which contain an antiquark of the given d

type. Thus

Q 'f~/ ~ -fz /p~(ff/. .& (5.8)

where f~/ and f~~«both are per-color momentum
fractions. Deep-inelastic neutrino scattering data
indicate that Z„„„,f~/~-3f&/~~ 0.03. For ff&„we
use our earlier estimate of —,', thus yielding
D f« ~

~ 0.3. We will use

Q 'f~/&=01

as a typical value since all d's need not come from
the intermediate mesons. This value will be found

to be consistent with the inclusive large-P~ data.
For the fs/~ case, the same arguments yield

&/0 a/C a/ & (5.10)

where the nonoverlapping virtual baryons B con-
taining the quark of type q (of a given color) in a
nonvalence Fock state are summed over. Again
we employ f;/~~ 0.01 and our earlier value

(f,"/s) 0.04 (estimated from large-x deep-inelas-
tic data) to obtain Z'fs/~~ 0.25. Our nominal
choice is

ing; we adopt n~ =10 GeV' as our canonical value.
Alternatively, we can also use the asymptotic

behavior of the meson and baryon form factors to
determine n„and n~. This discussed in detail in
Appendix B. The extracted values are consistent
with the ones estimated above.

In addition to its valence three-quark component,
the proton also contains five-quark (and higher)
Fock-state components which give rise to the sea-
quark distribution. In one extreme, the qqq qq
state can be considered as a qqq baryonic system
plus a qq virtual rnesonlike state. Since the q and

q interact over a long period of time, at least
some part of the Fock state will contain color-
singlet mesonic resonances.

We now turn to estimating the fraction of mo-
mentum carried by such nonoverlapping mesons in
the proton and by nonoverlapping baryons in the
proton. These will be crucial for the calculations
of high-P~ inclusive cross sections based on had-
ron-quark scattering subprocesses. Some, but
presumably not all, of the seaquarks can be con-
sidered as constituents of these intermediate me-
son systems. Using the general folding formula,
Eq. (3.4), we obtain the bound

Q 'fs/~= (3)0.25 0.17.

Qf~//, =4+'f~/p 0 4. (5.11}

Similarly, we estimate a similar factor of 4 for
the unrestricted baryon momentum sum, and adopt
the value

Q~s/~= Z 'fs/~ (5.i2)

Notice that because the same quark momentum is
counted more than once, the sum of (5.11) and

(5.12} can be greater than one.
Finally, we shall need the related quantities for

a pion-beam state. We estimate that

Qf~/, o ~ 8 ~

%Rien we include all Fock components of the pro-
ton or meson primary states, the usual estimate
for the momentum carried by the uud quarks-
summed over color-is

3 Q f,/~
—-0.5, (5.i3}

and similarly that 3f„/,+ ——3f~/, .——0.25. In each
case, this implies that quarks with valence flavors
carry, when all Fock states are included, one-half
of the primary hadron's momentum. This then al-
lows us to complete the entries in our Table II of
standard values.

VI. INCLUSIVE CROSS SECTIONS FOR BARYON BEAMS

We have now determined all the ingredients re-
quired to predict the inclusive cross sections for
specific meson, ba. ryon, antibaryon, and photon
induced reactions. We shall employ the general
inclusive formulas of Sec. III, especially (3.18).

Meson production

The leading subprocesses which contribute to
large-P~ inclusive reactions are those which have
the mimimum p~ and E-0 falloff and the largest
overall norma, lization. In the case of meson pro-

When computing the high-P~ inclusive cross sec-
tions one must sum over all the intermediate me-
sons which can interact in the hard-scattering sub-
processes Mq-Mq. For example, in the proton
Fock state (uud XX), each of the virtual meson
states uX, uX, dX, XX will initiate a high-p~ Mq
—Mq reaction. However, the restricted sum
Df ~/~ is the fraction of momentum carried by on-
ly one of the above. We will incorporate this fac-
tor of 4 by defining the "unrestricted" sum
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duction in proton-proton collisions, the dominant
contributions based on quark-hadron interactions
arise from quark-meson scattering (qM* —qM) and

the fusion process (qq-MM*), which lead to the

leading scaling behavior p~ 'a' and p~ 'a", respec-
tively, for 8, -90'. The contributions from the
ut diagram Fig. 7(a) and fusion diagram Fig. 7(b)
yield

~d, (pp-MX)=~ '3 Z f *~,f „X(-M*/f)fq(q/p)2' K, (9, 4;6, 0)
do . F(7)F(6)

g f«,f,&,&(q/f)&(qlp)2' F(„)K, (11,4;7, -1), F(9P'(6)
qe Ql hf, 9+

+ a ~e' Q fy, p f„p&(q!p)&(q/p)2' F, —K, (l 1, 4; 3, 3) ., r(9)r (6)

g, qehf, W
(6.1)

Z, (f p-v'x) =K(9, 4)[4.6+0.1O (u*)e2],
do'

(6.2)

where n(M*) is the number of states in the M* sum
(-3 to 4). This equation includes the contribution

FIG. 7. Various contributions to pp MX reactions.
(a) The (ut) graph for the qM —qM basic process. (b)
The corresponding inclusive direct process for
MB MX illustrating the simple connection to the
structure function.

The antiquark of the produced meson in the
qM~-qM subprocess may come from any second-
ary meson in the proton containing the correct
antiquark flavor. This is precisely the restriction
under which we derived the Llf„~&~quoted in Table
II. The allowed q's to leading order are those
which are in the valence state, e.g. , for M =K'
only q =a contributes with 3f„&~=0.1X3=0.3.

In the qq-MM* term the q and M* sums are not
independent since for a given q only certain M*'s
are present. %e estimate 3 to 4 M*'s correspond-
ing to one spin-0 and roughly three spin-1 states
of given quark composition. The result at 90',
for Prompt &, from the qM-qM plus fusiongraphs
ls

QP -K X),-„0.15K(11,4) .
d p

(6.3)

I

from the sf topology diagram of Fig 7(c) which has
the angular distribution K,(9, 4; 1, 0); at 90' it con-
tributes only 4 of that of the dominant ut contribu-
tion. The corrections expected from the Z(xr) fac-
tor are evaluated in Appendix A.

The cxoss section predicted above is for a
prompt &' produced directly by the subprocess; be-
fore comparing with experiment we must allow for
resonance-decay processes. In Sec. II we used the
x~ distribution to estimate that —

3 of the detected
pions are ' prompt. " The data from the Chicago-
Princeton group' give a fit of the form Pz, "(1—xr)"
with n = 8.2 and E =-9.0, consistent with the predic-
ted powers. Hence, the experimental rate is
roughly 9K(9, 4), compared fo the Prediction of
23.5K(9, 4). %e note that at large xz-1, the res-
onance-decay contributions will increase the effec-
tive F power (by about 1 unit). However, for
x~-x, the flattening of the structure functions
(relative to a pure power) tends to compensate
this small rise. See also Table V in Appendix A
for a discussion of the general accuracy of the
leading- powe r analysis.

In the SU(3)-symmetric limit the pp-K'X cross
section for prompt mesons is the same as that for
the prompt m'. However, more &"s than K"s are
likely to arise from resonance decay, and in addi-
tion some SU(3) breaking is expected, hence, we
expect K'/&'&1. The experimental rate is consis-
tent with K'/&'- v. The rate for s production is
somewhat smaller than for & since G„~&/G«~ ap-
pears to increase as x increases. " The & and

rates must be equal, however, at x~=0, in the
Feynman scaling limit, so the &/m ratio must de-
crease as x~ decreases to zero. As x~ increases,
however, it should rise and saturate to a constant
value in the symmetric quark model.

The dominant K cross section for t. -0 arises
from the fusion term of Eq. (6.2) and, for n(M*)



18 IYIAGNITUDE OF LARGE- TRANSVERSE-MOMENTUM CROSS. . .

(b)
= —'a a„a3f„ig f, &

n(B*)tt(q/p)tV(qq/p)

I'(5)I'(3)
I' {6)

0.4n(B *)K(5, 6) .

I
I I

~l

FIG. S. The two dominant contributions to the e'
term in the pp-K X yield; (a) the strangeness arising
from the target and (b) the beam.

However, for moderate & it is vital to retain
various contributions with higher & powers, for
example E, arising from the uI, and st topology
qK -qK graphs of Fig. 8. Each contributes a
prompt cross section of approximately (at 90')

0. tK (13,4 ) . (6.4)

For Fig. 8(b) the K distribution inside a proton is
normalized by taking G~&~(x) =G~&~(x) at x-0
(see Table II). Related higher Fock space state
graphs for K', &' production have already been in-
cluded via the full G„&~quark distribution and

G~&& meson distribution functions, which repre-
sent sums over all Fock space components start-
ing with the minimal one. Our estimate for the
K /K' ratio is thus

In order to make this estimate we have assumed
that the parameter &D, obtained by integrating
over the diquark internal. momenta, is of order
o.'~-1 GeV'.

For pr&2 GeV/c this contribution is very small
compared to the qM -qM contributions unless E is
quite close to zero. IIowever, it could be an im-
portant contribution to double-trigger experiments
on a meson-baryon pair. %e note that charge cor-
relations between the trigger and fast away-side
particles can be an important discriminant of the
contributing subprocesses. %e discuss this fur-
ther in Sec. XI.

Before leaving the discussion of meson yields let
us apply our estimates to the production of high-

pr pions from antiproton beams. Using the general
formula (3.18) one sees that only the second term
of Eq. (6.1) has to be modified. Since the antiquark
distribution in the antiproton is the same as quarks
in a proton, one has to multiply the second term of
Eq. (6.2) by the factor

(33/2''7«')(f«tQ, g,)/[f, gg(q/p)] = I!«'. —

do(pp -K-),1+4.6«'

do(pp -K') ' 1+0.1«'
= 0.03&'

= 0.03«'(1+ 4.5«') . (6.5)

The predicted ratio of meson yields from anti-
proton and proton beams then becomes

do(pp sx) I + 0.02n(Z*)«1
do(pp —sx) 1+0.02n()0*)«'

Recall that the numerical approximations used are
not valid for q —1. Experimentally, this ratio has the
same shape as the above prediction but with about
four times the magnitude. One sees that the fusion
term dominates only for x~&0.6.

If the total/prompt ratio for K is larger than for
K', (6.5) will be closer to the experimentally ob-
served ratio of total rates. %e are not at liberty
to increase the fusion contribution since to de-
crease Zf„&~[seeEq. (5.9)] and therefore, pre-
sumably, Q f„&,and 4fs ~~ (thereby decreasing the
K' but not the K cross section) would destroy the
meson beam normalizations of the next section
and the baryon production predictions discussed
below. Increasing f«&~ significantly would also not
be consistent with deep-inelastic neutrino data.

%e hove, in the preceding meson yield calcula-
tions, ignored the quark-diquark fusion diagrams.
%e will now show that their contribution to meson
production is small. For q(qq)-K'B' we have

—= 1+0.08{« ' —«'), (6.6)

q

FIG. 9. Baryon production from proton beams; (a)
the direct-scattering graph, (b) beam bremsstrahlung
(of a mesonic spectator system), and (c) the fusion pro-
cess, are shown.

using n(37*) = 4. For example, at xr = 0.3, the ratio
is predicted to be 1.20. In quark-scattering mod-
els, it should be unity, thus there is not much dif-
ference until x~ is large. In a model with fusion
only, the ratio would be e ', which is 4 at x+ = 0.3.
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Baryon production

The dominant contributions in the CIM for
P+p-p+X at high pz arise from the basic sub-
processes Bq -pq and qq -pB*. The first process

I

includes the direct contribution Pq -Pq in which the
incident proton participates in the hard-scattering
subprocess, as in Fig. 9(a). Using our general
formulas, (3.16) and (3.18), the inclusive cross
section is

K, {pp-px) = ~, '3 g 4y„g(qlp)x, '2K(3, 6)
do'

+ ~a'3 ~f,~pfs~&{q/f )&(B/f )2'
~ 8 K,(7, 6;2, 0), 1'(5)1 (5)

a, q

+~ '3Z f tpfrtlp+(q/P~~'(q&P)2' K.(11,6;-2, 6)., 1(5)f'(9)
1'(l2) (6.7)

Note that the two up quarks contribute coherently
in the proton cross section. These are the contri-
butions with leading 6 -0 behavior. All. valence
quarks participate in p production; thus 3/f, »
=0.5. Also, from Sec. V, Zfs&p- 0.7. At 90 the
cross-section prediction for prompt protons is
then

Comparison of y and mo yields

From our previously developed general equations,
one finds at 90'

Po' 5
K

d p
(PP - 'Y&) =

2
~ ~~3 fv) p f,(p(&g- z~, )

Af, q

(PP —PX) = 342m'r'K(3, 6)
do'

d3p

+ 394K(7, 6) + 4.2n(B*)K(11,6),

xg (M/P)X {q/p) 2'

1'(7)1'(5)
x

p( )
K(9 3)

(6.10)
(6.8)

where, in common with the fusion process for
mesons, we esiimate n(B*)-3-4. The last term
is never large, and for xz = 1 —e ~ 0.4, the indirect
term K(7, 6) dominates. The direct (leading-parti-
cle) term dominates the indirect qB-qP term when
x~& 0.5. Present data are reasonably fitted by
500 K(7, 6} implying a prompt-to-total ratio for
protons of roughly 80%, greater than for pions.

The q(qq)-M*P contribution is also easily esti-
mated by slightly altering the earlier &' production
result. One finds

-0.7n{M*)K(5, 6) .

It is clear that this term is much smaller than the
qB-qp contributions for reasonable a.

The PsomPt antiPmton yield from the fusion
qq -P&* term is

where we identify A.- = -X and A, ~ = A& —
A& by using

the Mq -yq' subprocess for prompt photons shown
in Fig. 10{a). Thus the photon cross section is
predicted to scale as p~ '(1-x~)' at 8, =90 .
For &" production, on the other hand, we have

{pp-+x) = —,
' o.'„'3Q fhI(pf, ) pN(M/fp)N(q/p)

{ ' {"K,(9, 4;5, 0),r (10)
(6.11)

where the explicit —,
' accounts for a = (~)'~'(uu —dd)

composition. The y/&' ratio at 90' is (after multi-
plying the above &' yield by the total/prompt -3
ratio)"

d(r(pp - y) 2 5a
do'(fjp 7f ) 3 3 ll~

.000(p4z' M+') .
do'

(PP -P&) = 1Uf(11,6),d'p (6.9}

with the total yield about three times larger. For
xz&-,', however, it is certainly necessary to in-
clude terms for p production with higher e powers.
In particular, one obtains a large Pz "z" term
from Pq-Pq scattering. The situation is as for
K production: The fusion term (6.9) only domin-
ates for small &, i.e. , at the edge of phase space.

l

(~) (~)
FIG. 10. Illustrating the simple and direct relation

bebveen (a) photon and (b) meson production for one
type of basic process.
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,~M

M

q

q
,~=-M

l

FIG. ll. The five important contributions to meson
production by meson beams. The direct process is (a},
and the quark-meson process in which the intermediate
meson arises from the (b} incident meson and (c}
proton target are also shown. The two possible fusion
processes are shown in (d} and (e}.

This is l.ess than ~1 the preliminary ratio reported
by Darrlulat ef Ql. , at pr 3 GeV/C. However,
there are other CIM sources of photons, giving a

Pg
' scaling behavior, from bremsstrahlung pro-

cesses as well as from ~ and g decay. These
should give a roughly constant contribution to the
y/s ratio,

The Mq - y~q subprocess with the same normal-
izations has been used in Ref. 24a to successfully
describe the P~ falloff of massive lepton pairs
from proton and pion beams. Thus these normali-
zations are consistent with those of the Drell-Yan
process.

VII. WCLUSIVE CROSS SECnoXS FOR PION SeAMS

In this section, the inclusive production of mes-
ons, baryons, and antibaryons at large transverse
momentum by pion beams will. be discussed. The
comparison of yields from pion and proton beams
is a very important constraint on any model and on

the values of the parameters used to describe the
data.

The meson yield from a pion beam arises in the
CIM from the five dominant diagrams illustrated in

Fig. 11, corresponding to the direct basic process,
M*q-Mq (where the M* can arise from the beam
or target), ~*q-~q, qq —MM~, and qq —M*M„
Not all of these contribute to the yield of all mes-
ons. For example, there is no direct diagram for
the K yield from a pion beam. The respective
contribution of these terms to the inclusive cross
section easily follows from our general formula

E, (mp-MX)=a„'3 Q f,(qN(q/P)x, 4K(3, 4) a+„'3Q f,(~f~(,1V(q/P)Ã(M*/&) K(7, 4;3, 0)dv 2'I'(5)I" (5)
6 P Ahf 0

+ a„'3Q (f,), +fq(, )f„g)q&(q/&)&(M*/P) K(7, 4;-2, 5)
2'I" (3)I'(7)

ff e lyAA

+2 ~&'3 g f,&, f;„&(qlp)&(q/v)
)

[K(5,4;1, 1)+K(5,4; 3, 3)].F (3)I"(5)

QaQe+ +

F. , (w'P - w'X) = 1.4x rK (3, 4)d'p

+K(7, 4)[4.7]+K(5,4)[0.04]n(»*)

=K(7, 4)[4.7+0.04n(M*)c 2

+1.4xz, e ']. (7.2)

The corrections from Z(xr) are evaluated in Ap-
pendix A, Table V. The most important contribu-
tion for xr & 0.4 is the K(7, 4) term which arises
from meson-quark scattering. For n(M*) =4 the
fusion term dominates the M-q term for xz ~ 0.8.
The direct &'q-m q term dominates the indirect
qM —qM contribution when xz ~ 0.5. The present
experimental results are compatible with the fit

The sums are restricted according to the quantum
number of the produced meson (e.g. , only q = d
contributes for the direct contribution to &p- &X).

If we take Zf„~~, Efs*~~ 0.8then this formula
gives for m" production (including the factor of ~

for the m'-dd, uu coupling) at 90'

3.5K(7, 4) for xr s 0.5, confirming that the direct
term does not dominate in that region. %e predict
that a. transition should appear in the data: Near
90, as x& increases above =0.5, the da-&'p~"' be-

av1or wll. l change to a Qv 6 pg behavior. The
occurrence of such a transition is an important
test of the normalization and dynamics of the CIM
approach.

For smal. l xz, the direct and annihilation terms
can be neglected in Eq. (7.2) to yield a. simplified
result. In the same region of xz, the prediction
for pP- + is al.so simple and one finds that the
ratio is expressible as [taking N(M/p) N(M/s)]-

[(f,y. +fpg. )&(q/&)+kf. g&(q/P)]

g f,g, &(q/0)

(7.3)

The momentum fraction f„&~has canceled as well
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as n„'and the prompt/total ratio. The experi-
mental value' for the above ratio is roughly
-0.6e ' whereas Eq. (7.3) predicts -1.0e '. Cor-
rections to this ratio and to the difference in effec-
tive I" powers are given in Appendix A. Chase and
Stirling (Ref. 6) have also predicted a ratio similar
to (7.3). We do not consider the present discrep-

ancy to be serious.
Let us now turn to predictions for two reactions

which have not yet been measured, namely &p-pX
and &p -pX. The first reaction has several im-
portant terms, which are illustrated in Fig. 12.
These five contributions [(a)-(e)] scale as pr "at
fixed a and 8, and take the form respectively

E (xp p) = &s23 g fq),N(q/~)x, (1 —x2) [1+(1 —x2) ]2K(l 6)
a

+ o, '3 g f„~(q/x)[x,'(I -x,)'+ x,'(1 —x,)']2K(I, 6)

+ as'3 Q f (g~.g~N(q/x)N(B'/p) K(5, 6; 0, 0)
r(3)r(s)

asB'

+ o,s'3 Q f~) g~, (qN(q/x)N(B'/p)2 ' K(5, 6;-2, -2), r(3)r(s)
Bs I' 6)ar

+ os'3 p f&~+,~~N(q/&)N(q/p)2 ' -K(5, 6; 0,-2)., I'(3)I'(5)

ay, 3+
(7 4)

Using the nominal values of the constants this
cross section becomes at 90' (again note that s-
quark contributions are coherent)

E ;(v'p -p) -= ssxr'(I ——,'xr)'
d'p

E, (v'P -P) =n, s(B*)3
d'p

x ~f,g,f,(&(q/ -)N(q/p)2 '
a& a

„r(3)r(s)
r(6) (7.6 )

x[1+ (1 —2xr)']K(1, 6)

+ 110K(5,6), (7.5)
and at 90', the nominal value is

= 1.2n (B*)K(5,6)

Q f„(qN(M/p)
X-

gfs~ N(B/p)
(7.6)

This ratio can be used to check a new combination
of the couplings used in the model. Using our
nominal values, this becomes

= 0 75&'(p' +M')' (7.7)

where n(B*) -4 is the estimated number of baryon
resonances of a given quark composition. These
two terms become comparable for x~-0.3 with the
second term dominating for smaller x~. For this
latter region of small x~, if only the dominant
terms are retained, the w/p yield at 8, =x/2
takes the simple form

Using n(B*)=n(B*)=—4 as a nominal value, the ra-
tio of the p yield to the p yield for small x~ at 90'
is

= 0.04[-'n(B*)] .
dc(vp —p)

'
4

(7.9)

As for K and p production in proton beams, im-
portant background contributions with higher &

powers are expected, and these can be estimated
in the same manner as before.

VIII. INCLUSIVE-EXCLUSIVE CONNECTION

In the limit E -0, a direct inclusive process such
as that for Fig. 3 is expected to smoothly connect
to its corresponding exclusive process, in this
case Fig. 3(a). Following Bjorken and Kogut'" this
can be made quantitative by integrating the inclu-
sive cross section over a finite range in missing
mass:

where we expect M'~ 1 GeV'.
The antiproton yield with leading E power arises

from the last term only, the fusion graph. The
general formula is

do. illC do'
d %2E

cP g g~2 d p

do'

dt d% (6.1)
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IX. THE CROSSOVER BETWEEN CIM AND QUARK-QUARK
SCATTERING SUBPROCESSES

FIG. 12. The five dominant contributions to baryon
(and antibaryon) production by meson beams.

Using our general formula, Eq. (3.16), for direct
processes, we obtain for a proton target

do inc
—sF+4 ~3 ~f N(q/P)26+T+N

inc dt ~ qf/0

x«tf3)I'(3II' -M~')' .
~ 50K

Using the definition of E» Eq. (3.12), the ratio be
tween inclusive and exclusive scattering becomes

E"' =l2 f N(q/p)' ' d%'(SII' —M ')'
fI P M~8

(8.2)

Now let us a,pply this to n'P and PP sca, ttering.
For both of these processes, N —T =4. In addi-
tion, since M~ measures the rate of falloff of the
nucleon form factor and hence provides a measure
of the coherence of the proton wave function, we
choose 4%=M~, and achieve the form

"' =3 gf„,N(q/P), [(M, +M,)' M;]'
el q V

O 8 Qfq/P (q/P)
(3& &)@ ((0.5)(1.2)

which indeed is of order one for our nominal val-
ues for the momentum fraction f /&, the shape
function N(q/p), a,nd (x) =,' (see Table II). Note
that this comparison does not account for the co-
herence of various amplitudes at the exclusive
limit.

QcF

df (q.q, -q.q, )

s2+ A&2 s 2+(' 8 s2
8

s2 ~9 t' " u' 2Vut
I

(9.1)
This cross section is spin- and color-averaged and
includes interference terms between t-channel and
u-channel graphs that are present when n =P. The
color coupling n, g, '/4v is defined by the interac-
tion La,grangian

(8.2)

%e will calculate jet and single-particle cross
sections, but leave the discussion of the former to

t- pole u —pole

PIG. 13. Lowest-order diagrams for quark-quark
scattering via gluon exchange.

As we have emphasized, subproeesses based on
quark-hadron lntelaetlons must occur ln any
quark-parton model. In the preceding section we
have shown that the magnitude of the qq-M and
qqq-8 couplings (determined from form factors
and exclusive processes) leads to inclusive high-Pr
cross sections consistent with the experimentally
observed normalization and scaling behavior for
Pr&8 GeV/c. In this section we will compare the
scale- invariant contribution. from quark-quark
sca.ttering expected in lowest-order QCD with the
CIM contributions, and we estimate the crossing
point inP~ where a, P~ scaling behavior can be
expected to dominate. In our calculations large
scale-breaking effects in the structure functions
will be assumed to be absent. ~ %e also need only
consider the scattering of valence quarks, since
only a small fraction of the momentum of the pro-
ton is carried by sea quarks. In addition one ex-
pects scale-invariant p~ contributions in QCD
from gluon-quark and gluon-gluon interactions;
these, however, require knowledge of gluon dis-
tributions which are highly model dependent. Es-
timates of QCD contributions are made in Pef. 8,
but for completeness, we will repeat some of their
discussion within our calculationa. l framework.

The differential cross section fox quark-quark
scattering from the lowest-order QCD diagrams
shown in Fig. 13 is'
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the following section. For proton targets q =u, d
dominate and we ean safely neglect antiquarks and
the qq scattering contributions.

In the case of the jet-trigger cross section from
q~qg-q~qg, we must distinguish carefully the
cases G=p and G4p. In the latter case the jet
trigger receives a contribution from either of the
final-state quarks and the cross section should be
doubled. For the case G =p, the cross section al-
ready accounts for both trigger possibilities. The
90' jet-trigger cross section can be computed in a
convenient ana. lytic form from Eq. (3.18). The fac-
tor which changes from term to term in this for-
mula ls 2 =2

The various terms in the bracket of Eq. (9.1)
then give

—,'2'[(2'+1)+6 (2'+1) ——,
'5 2'] =-', 2'[5+-,'5 ],

(9.3)

which, when weighted by the f,» factors, gives

r(1+f)r(1+F) f+F
I'(2+f+F) F +fxr

(9.9)

The last factor is relatively slowly varying. For
typical values f = 1, F = 7, N = 2, it varies from 2.3
at xr = 0 to 1 at xr --1. For very small xr(& 0.1) the
above approximation is not adequate and must be
supple me nted.

As an example, for quarks decaying to mesons,
f=1, Eq. (9.9) gives the suppression factor

r(1+f)I'(1+F) 1 1

r(2+f+F) (1+F)(2+F) F'

E, (PP ft) = Q dIK(F +f+1,N) J(xr), (9.8)
p Q

where
1

Z(xr) = dw(I —w)»w~[w+(I -w)xr]'" z '
0 4

e approximate the integral using the mean-value
theorem [(w) =F/(f+F)] and find

(0.3)'[22/3] uu,
;2'x 2(O. 3)(O.2)[5] ud, du,

(0.2)'[22/3] dd.
(9.4)

For the m' cross section, a reasonable fit to the
qua, rk fragmentation functions gives D, »„&„~,(z)
=1.0(1 —z)/z. Equation (9.8) then gives at 90'

For triggering on a jet arising from either a u or a
d quark we take

E„,(pp-q-v ) =K(9, 2)n, '(O. O35),d'p (9.10)

uu + 2(ud +du) + dd,

while for a n trigger only we use

uu+ (ud +du) .

E 3 pp x =K7 2n~¹q p
do $u or d

gp 'Q onlyg „,, r(5)r (5) 2.15
I'(8) 1.26

=K(7, 2)n,', '2.51 (9.5)

where we evaluated J(xr) at xr =0.3. The ratio of
this contribution to the data (or the CIM prediction)
is 0.0044n, 'pr' or 4 && 10 'pr' for n, = 0.3. Thus the
CIM P~

' terms can dominate the cross section for
pr & 7 GeV/c. The crossover moves topr —= 10GeV/c
for &, =0.15. The above result is not sensitive to
the form of D„&,for reasonable fits to the frag-
mentation data. obtained from e'e annihilation and
deep-inelastic scattering. The total yie 8 ean be
succinctly written in the form

This analytic form is a useful characterization of
the QCD qq jet cross section.

In order to compute the cross section for the
production of a specific hadron h one must incor-
porate the final-state fragmentation function D„&,

which may prove convenient in fitting the large-p~
data. Equation (9.11) implies for n, =0.15 a change
in the Pr power (at fixed e) from n„,=7.5 at Pr =6
to n„,= 4.8 at Pr ——14 GeV/c.

X. JET-JET CROSS SECT1ONS

cf0'
xE„,(P,P,-q; s, t /z, u/z ) .4p

(9 6)

(9.7)

Using

D =d and E, =IK(F,N),
(1 —z)» do

z 6 p

we obtain at 90' [defining z =w y (1 —w)xr]

We turn now to the calculation of the cross sec-
tion for jet production at large transverse momen-
tum obtained from the CIM hard-scattering sub-
processes. In the CIM the jets consist of single
hadrons, multiparticle resonances, as well as
quark and antiquark jets which arise from subpro-
cesses such as Mq Mq, &q-&q, and MR qq.
We shall also make comparisons with the jet-trig-
ger cross sections calculated from qua. rk-quark
scattering in Sec. IX. It should be emphasized that
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the relationship of the predicted jet cross sections
may not be simply related to what is measured ex-
perimentally in calorimeter trigger experiments,
due to the effects of resolution, background par-
ticles, and missed hadrons. Furthermore, thex'e

may well be contributions fx'om multiple-scatter-
ing processes or multiple high-Pz react. ions in the
same event which can complicate the jet trigger.

I et us now estimate the jet-jet cross section in

pp collisions. In the CIM, the cross section for
pxoducing a single prompt meson or proton is ex-
pected to be —,

' to ~ the observed inclusive cross
section. The rema. inder is made up by production
of resonances which decay into the observed mes-
on. In a jet trigger a,ll the decay products of a giv-
en resonance are seen which effectively means that
we must multi. ply our prompt cross sections by the
number of possible resonances. In addition, a, jet
trigger also can catch the decay products of the
quark which normally balances the trigger meson
in the ClM diagrams. %e proceed to quantitatively
estimate these effects (discussing only those dia. -
grams which are important).

The important subprocesses are as follows:
(a) Mq-M*q. Either M* or q may be the jet.

%e estimate the number of M*'s which can parti-
cipate as N(M*}» 9+3 &9 =36 corresponding to the
spin-0 and spin-1 mesons nonets with statistica, l
weighting. In support of this we cite the p cross
section which experimentally is approximately
equal to the total & cross section. " Since more
p's are presumably prompt as compared to the
pions (not decay products of still higher resonan-
ces), we are led to (see also Ref. 14}

w(prompt) w~ w(total)
p{prompt) p{total)

In the following we take N(M*) =40 as a reasonable
estimate; note that the previously emplo yed n(M*)
is that portion of N(M*} resonances which can be
produced by quarks of g given type, i.e., n(M*)
=w'N(M*) = 3-4.

Including both the qua. rk jet and meson-reso-
nance trigger, we have, for qM -qM~,

dcE, (pp -jet(meson induced))
6 p

do'
=BOE (pp —w(prompt))d'p

=27E, (pp w(total)) . (10.1)
d p

The above prompt ratio of 3. , a,s discussed in Sec.,
II, also leads to reasonable x~ distributions:
dN/dye must extend beyond xe = 1, and the many
nonprompt m's guarantee this.

(b) Bq-B*q. Either the baryon system B* or the
quark may be the jet. The entire octet and deeoup-

let, N(B*)=8+(2)10=28, can contribute. Allowing
another 25'fq from stiH higher baryon states gives
the estimate N(B~) 35 and

der
, (PP -jet(baryon induced))

d'p
d0'

=V0E (pp- p(prompt))i!Ip

(PP -P(total)), (10.2)
do'

where we again employ an estimated prompt/total
ratio of 0.8.

Combining (a) and (b) we have

da '"
Z (g -jet)=27 (Bt'p ') 58( 5t000')"

d'p

(10.3)

3500 0 3+at pr
g2p 4 g2

(10.4)

where we have taken Edcr/d'p(pp - wX) = Bc'/pr' for
the w', w average. For v& =23."I GeV (pq, &=300
GeV/c) and a, =0.3, this gives It =62, 55, and I"l2

at pr =3, 4, and 6 GeV/c, respectively. Thus we
expect a jet/single ratio greater than 50 and in-
creasing rapidly at highex p& values. The ultim-
ate ratio at la.rge p~-once the qq-qq scattering
contribution dominates the single-particle cross
section —is R = 72& '. The Last term can be further
enhanced by gluon-quark and gluon-gluon interac-
tions which have been estimated in Ref. 8."

XI. DISCUSSION

The analytic results, Eqs. (9.7) and (3.18), for
general reactions A+B-C+X are extremely use-
ful, not only for high-p~ reactions, but also for
calculations in other contexts, e.g. , the two photon
processes e e -e e e e" —e e yy-e e CX, and
single lepton production in hadron coHisions. The
results are a realization of the dimensional- and
spectator-counting rules at large pz and large &, :

The numbers in parentheses are the pp - & and

pp -p lax ge-p& single-particle cross sections. The
contribution of the direct processes for baryon
production and the M%- qq subprocesses a.re rel-
atively sma. ll..

Comparing these results with the p~ '6' jet cross
section, Eq. (9.5), arising from q-q scattering, we

see that the CIM terms are dominant until pz =4.6
(6.5) GeV/c for &, = 0.3 {0.15).

Including both the CIM and qq -qq contributions,
the total jet/measured single-pion cross section is
predicted to be
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E = g (p, '+M') F(e e )
Subppocesses

,-, p (p '+M') e g(e, ),

where t= 1 —xs=3)I'/s. Here n„«„is the number
of active fields in the high-pr subprocess (e.g. ,

active for qq —qq, 6 for qM - qM, 8 for q& —q&)
and F = 2n„„,—1 where n„„,=n(aA)+n(M)+n(Cc)
is the minimum number of elementary constitu-
ents required in the fragmentations A —a, 8 —6,
c-C (e.g. , n„„=5 and F =9 for qq-qq or qM-qM
in pp-MX).

The spectator-counting prediction for G, &„(x)at
x-1 is G, &~(x) ~ (1 —x)'"' "~ ' where n(aA) is the
number of fast elerrfentary constituents of the
bound state A which are left behind after fragmen-
tation. Examples are vW»-G, &s

—(1 —x)', Gs&s
—(1-x)', G,&„-(1 —x)'. Thesepredictions are again
based on the short-distance behavior of lowest-
order terms in renormalizable perturbation the-
ories assuming a finite Bethe-Salpeter wave func-
tion at the origin. [In cases where a is a fermion
and A is a boson (or vice versa) the power can be
increased by 1 from spin effects, although this
effect is generally canceled by nonleading correc-
tions. In the case of elementary bremsstrahlung
in perturbation theory one has G„~,(x) - a/min
(s/m')[I+ (1 —x)']/x etc. , where the logarithm ar-

ises

s from the kr integration. ]
In general, one predicts that aside from normal-

ization effects the subprocesses with the minimum

n««» (minimum Pr ' power) will dominate the
cross section at large pz and small c. Thus, given
the fact that the qq -qq term has a small predicted
normalization as shown in Sec. VI, the dominant
terms (for pr & 7 GeV) for pp- m', K'X will come
from the qM -qM subprocess [Fig. 7(a)]:

TABLE IV. Scaling predictions for Edo/d p
=Cp,-"(1

Large-p&
process

Leading CIM Predicted
subprocess n', I'

Observed
(CP) '
n;F

pp ri'x
jr
K'
K

qM q7|
qM —q 7t

qM qK'
qq MK
qM —qK
qB qp

qq —Bp
q&-qP
qM —q 7t

7t.q 7t q

qq M7t

8;9
8;9
8;9
8;11
8;13

12'7
12; 11
12; 15
8;7
8;3
8;5

8.2; 9.0
8 ~ 5; 9.9
8.4; 8.8
8.9; 11.7

11.7; 6.8
(8.8; 14.2)

~Reference 1.

da M„(ns'-nw') =
dt s' 1+z

The angular dependence of the subprocess can be
determ. ined from experiment either from the cor-
related angular dependence of the away-side jet"
or the angular dependence of the pp- &X inclusive
cross sections. ' Both analyses indicate that the

in Fig. 14, the best fit quoted for the 8, = 90 data
for pp- x'X is pr "(1—xr)' " (with uncertainties
in n and F order + 0.5). The relative decrease of
the s /&' ratio from -unity as xr increases evi-
dently reflects the relative suppression of the d/u
quark ratio in the proton structure function at
large x as remarked in Sec. VI.

An important check on the identification of the
underlying subprocesses is the angular dependence
of its cross section. The leading CIM contribution
to pp- m'X a.rises from um'-u7t'.

E, (pp- w'", K'X)-fe'(pr'+M') f(e).
(11.2)

I
0-26

Here M' represents terms of order &k~'&, yn, ',
etc. All other quark-hadron subprocesses lead to
a higher power of I/pr or e. In the case of K pro-
duction, the dominant contribution at high P~ and
very small E will come from the "fusion" subpro-
cess qq-K M[Fig. 7(b))

«4E, =Ie" (pr'+M') f(e),d'p

whereas at moderate a, the qM - qM &" terms
discussed in the text, Eq. (6.4), will dominate.
A comparison of the CIM predictions with the ex-
perimentali sts' f its to the Chicago- Princeton (CP)
data' for Pp-m', K', pX is shown in Table IV. The
a,greement is very good. For example, as shown

p 7r +X-+
P

~

O-27 g- ~o,
CI

O.

~ 0-28 =+
b

( I-xT)9~
I0-29

I0-gP & 200
o 300
o 400

I I I

0 0.2 0.4 0.6
xT = 2pT/Js

FIG. 14. Scaling-law fit to the cross section pp—7I X, e~ =—90, xz——2p&/v s &0.3. From Ref. 1.
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data are best fitted mith the form

This estimate has theoretical uncertainties of a
factor of 2. This can be compared to the fit to the
CP data' at 90',

Ed /d'p(pp K'X)-5(l — )'" '/p '""
Thus the normalization of the qM -qM amplitude
as determined from exclusive reactions and form
factors is of the correct size to account for the
Fermilab data. The prediction for &' is similar
but somewhat higher due to the larger number of
decay channels and to possible SU(3)-breaking
effects.

The leading CIM contribution to K production
at very large xT is expected to be due to the
"fusion" subprocesses qq -MM. For K produc-
tion this includes uu-K'K, du-K'K as well as
K* contributions. Specifically, at 90' the yield for
pp-K X is

gll
0.02

P'T
(11.5)

for the contribution of the single subpxoeess
uu -K+K alone. The calculation includes a factor
of 3 from the fact that quarks of the same color
must annihilate and ~ from the spin crossing fac-
tor. This is useful for a,n estimate of how often a
K trigger will be balanced on the away side by ex-
actly one particle, the K', in the CIM. Taking al.l
the prompt fusion contributions, the coefficient in
Eq. (11.5) is increased to -0.16. Additionally, one
can expect a contribution of order 0.8(l —xr)"/pz, '

do' 1 1
+~3

dt sI; su

(equivalent because of the pp symmetry). This
coincides with the CIM prediction [Eq. (11.3)] for
the angular dependence reflecting elementary spin-
—,
' exehange. It should be emphasized, though, that
phenomenological analyses which use the opposite-
side jet distribution can be complicated by spec-
tator effects unless the particles in the jet are re-
quired to have a sufficiently large pT.

Since the values of the basic quark-hadron coup-
lings n„and a~ are determined by exclusive pro-
cesses, predictions of the CIM for inclusive re-
actions are almost completely constrained: The
model predicts the pT pomer, (1 —x~) power, and
angular shape, as well as the normalization for
each contributing subprocess. As an example, for
K'())') production in proton-proton collision the
dominant CIM subprocess is uK'-uK' which
contributes (in GeV units) using [Eq. (6.1)]

do (PP-K'X)-3, I+xss) '+ (1 —x„s)'
d f) PT

U ZU)d)S

(Q~) = "6 (Qq) = -I/5

U

M

(d)
S U

K M K M
- -

K

S 5U, d

(Q, ) = 5iiZ
U S

(Q;) = ix5

FIG. 15. Dominant CIM diagrams for Mq K*q' ill-
ustrating the final-state charge correlations.

at 90' from K u -K u s-channel subprocesses, etc.
Thus the fusion subproeesses mill not dominate K
production until xT ~ 0.6.

The value of &&-10 GeV' allowed us to predict
the normalizatiorl of cross sections for baryon and
antibaryon production. The leading CIM processes
are q& - q'&' and qq —&B'. The predictions are
consistent with the Fermilab and ISR data as dis-
cussed in the text.

It is interesting to see hom chmge correlations
between the trigger charge and the charge of fast
particles on the away side arise. In the ISR do-
main, where xr is small (-0.3), the dominant CIM
subprocesses for K' production are qM -q'K and

qM -q'K* -q'K. The various recoil quark systems
q' involved in the direct product of kaons are
shown in Fig. 15. (Notice that the strange meson
M in Fig. 15(a) is found in proton Fock-state com-
ponents with ~ 5 quarks, and the recoil quark has
a roughly equal chance [assuming SU(3) symmetry]
to be an s or d or either of the tmo u quarks. ) As
shown in Fig. 15, the quark system opposite the
trigger is always positively charged for a K", and
roughly neutral (or slightly positive) for the K'.
[The s-pole contribution of Fig. 15(b) is suppressed
by a factor of 2' at 90'.] The same results are
maintained when decays of K*-K& are included.
In the case of the fusion contributions for K, the
recoil system tends to have charge 0 or + 1, so
again the K tends to be balanced by positive
charge. The charge correlations for P and@ are
predicted to be simila. r to those for K' and K trig-
gers, respectively.

Since the CIM processes always involve flavored-
quark exchange, charge correlations between the
trigger and away-side systems occur naturally.
In contrast, such correlations are generally ex-
pected to be negligible for qq scattering via col-
ored gluon exchange. It would also be interesting
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to determine the charge and strangeness configur-
ations of the spectator systems in the beam direc-
tions accompanying a particular high-pz trigger.
As emphasized elsewhere, " the charge flow asso-
ciated with massive-lepton- pair production pro-
vides an ideal laboratory for the study of quantum-
number transfer in high- energy r eactions.

Ke have also seen in Sec. IX that contributions
to single-particle production from the p~

' sub-
process qq- qq are small (for &, &0.15) untilpr &10
GeV/c, see Eq. (9.11), due to the suppression from
the effects of single-particle trigger bias. Other
Pz ' subprocesses, such as gq-gq, qq gg, and

gg-gg, are similarly suppressed.
However, there are additional processes present

within the @CD framework which are not sup-
pressed by trigger bias. At first glance the most
important example is gluon+ quark- meson+quark.
This process yields p~

' behavior in the inclusive
cross section. Using rough estimates it seems to
dominate all the above mechanisms at all but the
highest pz values. However, the gauge-invariant
structure of @CD leads to a remarkable cancella-
tion among the various diagrams contributing to
this process. As a result it may not play an im-
portant role in single-particle inclusive scatter-
ing, but deserves further study.

While the above p~
' processes are probably not

dominant for single-particle yields until pz is very
large, measurements involving aj eI; A'iggex with
large total transverse momentum p~ are impor-
tant since the natural suppression of quark-quark
scattering (and other processes involving gluon.
jets: Mq-gq, gq-gq, qq-gg, gg-gg, etc. ) due to
bias from the single-particle trigger is removed.

In order to interpret such jet measurements, it
is crucial to be able to distinguish the various
possible contributions. This requires knowledge
of the scaling behavior in/~ and x~ of the cross
section and the nature of the source of the hadron-
ic jets. At large P ~, a jet can arise from a quark,
multiquark, gluon, or hadronic system. Empiri-
cal means of discriminating between them will in-
clude (1) quantum-number retention, (2) the pow-
er-law behavior in the momentum fraction x of the
leading particle, and (3) the associated multipli-
cltle8.

An important theoretical and experimental ques-
tion is how to define a large-p~ jet trigger which
does not confuse contributions from spectator par-
ticles. In addition, the large values reported for
&Pz & may indicate contributions from processes
involving more than 2- 2 collisions. It may be
possible to resolve some of these questions by
studying a quark" jet trigger at high p~ in deep-
inelastic lepton scattering where we know" the
subprocess is lq —lq.

The cross section for p+p - jet+X with a calori-
meter trigger, as defined in Ref. 30, is observed
to be quite large. At P«b= 200 GeV/c, the ratio
R = Endo/d'p&(pp- jet+X)/Edc/d'pQp —v'X) appears
to be in the range 200-400 for p~-5 GeV. This
appears to be too large to be completely accounted
for by the CIM subprocesses, Mq-Mq, M)1~ qq,
q+qq-M+B, qB-qB, qq-MM. Using Eq. (10.4),
for a total jet trigger one obtains a ratio R of or-
der 50 for the above kinematics. The leading pro-
cesses in the CIM scale as E~ dc/d'pz -P r'(1 —xrz)'.

The contribution to the jet trigger f rom the scale-
invariant qq-qq process from Eq. (10.4) is (in
GeV units)

E~dc/d'p~ = 2.5o, '(1 —xr~)"pr~ '.
Asymptotic-freedom-type modifications to the
structure functions or quark constant can give log-
arithmic modifications to this result. However, it
should be emphasized that the exponential factors
which have been computed for gauge theories to
exclusive quark-quark scattering m'e not apPli-
eable to inclusive reactions, since the quarks are
allowed to radiate. %e emphasize that any pro-
posed scale violation from kz fluctuations, struc-
ture functions, or quark form-factor effects must
not in total exceed the scale violations seen in
pr'Edo/d'p(pp —pX) at fixed xr and &, . Double
counting should be avoided.

The qq —qq contribution to the jet trigger from
Eq. (10.4) for &, =0.3 at P„b=200 GeV/c, pr = 5

GeV isR == 0.3a,'pr'/(1 —xr)'=—70. Other @CD pro-
cesses involving gluons are roughly double this
contribution. Thus it is possible that the CIM pro-
cesses, combined with scale-invariant QCD con-
tributions, can give jet cross sections just below
the observed values. In order for this picture to
be a viable and consistent explanation, however,
the j ef. n'oss section at p~&5 GeV should begin to
approach pyg behavlo 1 at flxed x pg and

XII. CONCLUSIONS

. The experimental data for single-particle and

jet cross sections, charge, momentum, and angu-
lar correlations are now so extensive that the con-
straints on fundamental models have become over-
whelmingly restrictive.

If sufficient scale breaking is assumed —either
in the structure functions and/or the scattering
amplitude —then it is always possible to interpret
the single-particle cross sections in terms of an
effective quark-quark scattering cross section.
However, as we have emphasized here, it is diffi-
cult to understand the input normalizations and the
strong charge correlations and momentum correl-
ations measured by the BFS collaboration, "as
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well as the p~ behavior for baryon production.
Further, there is no obvious explanation or con-
nection with exclusive large-p~ data.

On the other hand, the CIM, together with di-
rnensional- and spectator-counting rules, predicts
the dynamical forms and normalizations of inclu-
sive and exclusive cross sections in terms of two
fundamental coupling constants which can for in-
stance be determined (in fact, overdetermined)
from low-energy fixed-angle exclusive scattering,
form-factor asymptotics, or momentum distribu-
tions. The scaling laws of the CIM assume a un-
derlying scale-free theory (modulo logarithmic
corrections) characteristic of renormalizable per-
turbation theories. Given that the coupling a, of
@CD is numerically small plus the strong trigger
bias suppression of quark jet fragmentation, the
leading subprocesses for single-particle yields
then arise most naturally from quark-hadron scat-
tering amplitudes. We emphasize that the qM
—qM, qB-qB contributions and their crossing
variants are an essential co~nponent in any model
including QCD. The calculated subprocess cross
section for n' or K' production in pp collisions is
do/dt(qM - qiVI) = xa'„/su', where a~ is determined
by the valence meson wave-function renorrna, liza-
tion. This form then yields the observed p» 8, ~,
x~ dependence as well as the magnitude of the in-
clusive cross sections. However, as we have dis-
cussed in Sec. X, it does not seem possible for the
quark-hadron and quark-qua, rk processes to ac-
count for the reported large jet cross section.

As we have emphasized, processes based on

qua. rk-hadron scattering ca.n dominate large-p ~
single-particle inclusive rea, ctions, despite their
P~ ', P~

" scaling behavior, due to the absence of
trigger bias and the relatively large size of n„and
n~. The CIM terms are predicted to dominate the

qq —qq scale-invariant contributions for p~ below
-7 GeV, assuming n, =0.3. The crossover point
in p'r is controlled by the ratios ax/a, and

(as/az)'~'. For inclusive meson yields one needs
an estimate of the normalization of the G„»(x)
structure functions for virtual qq mesonlike states.
These were fixed approximately by normalizing to
the measured antiquark momentum fractions. The

p~, &, and angular dependence of inclusive meson
and baryon production rea.ctions can then be under-
stood in terms of the minimal set of two subpro-
cesses, qM-qM, qB-qB, and their crossing va.r-
iants. The normalization of each subprocess con-
tribution has been approximately computed. De-
tailed predictions for other beams (including pho-
tons and leptons) can be made using the simple
general formula Eq. (3.18). There are also many
important tests of the model involving correlations
between particles on the same-side, away-side,

and beam fragmentation regions. Occasional
events are predicted to occur with a single particle
in both the trigger and away-side systems, via the
qq-M&I and qq-BB subprocesses. These may oc-
cur at a larger rate in MB and BB collisions.

It is useful to distinguish three regions in trans-
verse momentum for hadronic inclusive reactions
at high energies:

(A) The asymptotically scale-free, large-pr re-
gion (above pr -7 GeV/c for single particles, and
Pr-5 GeV/c for jets), where the simPle Perturba-
tion-theory contributions for QCD are expected to
dominate if n, ==0.3. In this region, in which
strong interactions take their most elementary
form, one will be able to study the properties of
quark and gluon jets, as well as multiquark jets
in the spectator regions.

(B) The moderate-pr zone, where the CIM dia-
grams are predicted to dominate giving scaling
law contributions of the form p~ ', p~

" ~ at fixed
x~, depending on the detected particle. In this re-
gion (roughly 2 &pr & 7 GeV/c for single-particle
reactions), one can trace the quantum-number flow
characteristic of duality diagrams. Thus, the
dynamical structure of hadron wave functions can
be studied in detail in this region. In the case of
exclusive reactions, Regge behavior takes its most
basic form, with trajectories a(f ) receding to neg
ative integers, or in the case of Compton scatter-
in to a J=O fixed pole.

(C) The most complicated region is at low pr
where the cross sections Feynman-scale and many
different coherent, diffractive, Regge, and reso-
nance/cluster phenomena operate. In the central
rapidity regions correlations with the quantum
numbers of the incident particles become negligi-
ble, but the multiplicity in the central region may
well be related to the same color confinement dy-
namics in the e'e —hadrons. Furthermore, the
fragmentation regions with xz=pz /pz~-+1 can
also be related to off-shell ha.dron dynamics, and
spectator quark counting rules can be used to dis-
criminate the basic hadronic mechanics at low
transverse momentum.

The transition regions between (A) and (B) or (B)
and (C) are clearly complicated since several dif-
ferent mechanisms compete, but phenomena in such
regions could be important for the study of interfer-
ence effects, etc. Photon/hadron comparisons are
especia. lly important; in regions (A) we predict
y/v-const. at fixed xr; in region (B) y/v-apr.

We note that in the CIM several different areas
of hadron phenomenology become interconnected:
(a) form factors, (b) large f and n exclusive reac-
tions, (c) Regge behavior at large t, (d) pa.rticle
yields for xz near zl at low f, and (e) large-pr in-
clusive reactions. The model satisfies the corres-
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pondence principle, in the sense of Bjorken and

Kogut, '5 and provides a smooth connection between
these various regions and phenomena.

We have tried to show in this paper that the nor-
malization of the various CIM contributions to in-
clusive scattering are fixed by external constraints
and are not arbitrary. They are of a reasonable
size to explain the moderate-transverse-momen-
tum single-particle yields (pr ( 7 GeV/c) and qual-
itative features of the charge correlations. The
CIMis consistent svith QCD, for example, whereas
arbitrarily orwitting the CIM diaI, ran:~s uonld not be
internally consistent. The CIM calculational rules,
however, do not explicitly include any logarithmic
variations which are expected in such asymptoti-
cally free theories (mostly for reasons of simpli-
city)

We thus see thata theory of short-distance had-
ronic processes patterned after asymptotically
free QCD is tenable. CIM processes based on

quark-hadron scattering are required for theoreti-
cal completeness and describe the experimental
data at intermediate p~. Quark-quark scattering
and related processes involving gluons will domi-
nate at high values of pz., the precise crossover
point depends on the value of a,. Thus a rather
complete model of short-distance processes exists
which is consistent with a fundamental quark-quark
interaction, in particular QCD, and which enjoys
considerable phenomenological success.
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APPENDIX A: ACCURACY OF GENERAL FORMULA (3.18}

The hard-scattering formula for processes not involving final-state fragmentation (applicable io CIM

prompt processes and also quark or gluon jet cross sections) can be written in the form

(Al)

where F(x)=xG(x), and the integration variable s
is the cosine of the scattering angle in the subpro-
cess center of mass. The overall kinematics is
specified by x, = —u/s, x, = t/s, and pr', wit-h

&=I —xa=1 —x, —x, [(see Eq. (3.14)]. The leading
behavior at large p~ and z-0 is given by Eq.
(3.18). To illustrate the accuracy of this latter
form, we compare the two formulas foi the case
of the qM -qM (ut) subprocess contribution to pp
-MX. Here dB/df = wo. „'/su', and we take E«~(x)
= 8(1 —x)' for x& 0.3, E,„(x)= 4(1 —x)' for x& 0.2,
and constant otherwise, as inEq. (3,1). For pion
beams, we use E„i,(x) =4(1 —x)' for x&0.4 as in
Table II.

Equation (3.18) then gives for e =90":

E (PP MX) = —nu'
do' , (1 -x,)'

(A2}
d'p 21 pq8

In Table V we show the ratio of (Al) to (A2) [the
quantity defined as J'(xr) in Eq. (3.18)] as a, function
of x~ at 90, and also the effective power E,«of
z =(1 —xr) obtained for pr'Ed@/d'p from (Al}. We
see that for xr&0.3, the simple form (A2) is accu-
rate in normalization to within 25%. Furthermore,
we see that the power behavior (1 —xr)' predicted
by the spectator counting rule (F=2n„„,—1) is
accurate to within -~ units for x~& 0.4, and the ef-
fective I power decreases below this point. "

TABLE V. Accuracy of general formula (3.18}.

f I (pp} -~(~p})„,

0 ~ 1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.37
0.63
0.99
1.23
1.19
1.13
1 ~ 09
1.05
1.02

3.8
5.0
6.3
8.6
9.3
g.2
9.1
9.0
9.0

0.42
0.58
0.77
1.00
1.14
1.10
l.05
1.02
1.01

3.8
4.5
5.0
5.6
6.9
7.2
7.1
7.0
7.0

0
0.5
1.3
3.0
2.4
2.0
2.0
2.0
2.0
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It should be emphasized that the effective power
F f f is in gene ral expected to dec re ase in regions
where the structurefunctions F(x) are flat, i.e. , for
xr& min(x„x~). Thus, a fit to F,«over the region
0.2&&~&0.4 for the above example should give a
value of F,«-6 for pp-M and F,«-5 for 7tp-M,
yielding a ratio that varies as 4F,« -1. On the
other hand, for x~&0.6, &F,f f equals 2 to high
accuracy in agreement with the spectator-counting
rules.

p+q+r

P+q+r
2

p+6
2 p+ f'

P+q

FIG. 16. Diagram for quark-meson scattering using
the iteration of the gluon-exchange kernel in both Bethe-
Salpeter wave functions.

APPENDIX B: COUPLINGXONSTANT CONSISTENCY

In Secs. III, IV, and V we have shown that the
values n„-2GeV' and n, -10 GeV' for the meson

qq and baryon qqq couplings are consistent with
the normalization of large-angle elastic reactions
and the momentum distribution functions. We
demonstrate here that a similar consistency is
present when comparing the above determinations
to that obtained from the asymptotic behavior of
meson and baryon form factors at large t. We also
define here the relationship of n„and o~ to the
Bethe-Salpeter wave function.

Let us consider the q-q Bethe-Salpeter wave
function 4(p, k) for the bound-state pseudoscalar
meson: We define

4&( p, k }= (m + —,
'

p —k) y, g(k) (m ——,p —k), (Bl)

where g(k) is the usual amputated vertex function,
&t&(k), divided by the propagators

[(p/2 —k)' —m'][( p/2+ k)' —m'] .
The calculation of high-p~ processes require know-
ledge of g&(p, l) at large relative momentum f. One
can iterate the Bethe-Salpeter equation once and
obtain

+(p, l) = (&n + —,
' p'- /) '

x Vl —0+ pk m —~
(2»)'i

(B2)

In the case of single gluon exchange, for large l

we can approximate V(f —k) —V(l) -y'g, y,'/l'.
Furthermore, in the region of integration where
k is small, we can drop the k dependence in the
Dirac numerator of the equation for k(p, k}, there-
by obtaining at large relative momentum

3R= u(p+ q)y, [m, +-,'(P+ (+ P)]y,y"]
& y»[»q+ z(P+ ~)]y,y'u(p)

x j'(0)g,'(x'p, 'p, ') -'C, (B6)

where C is a color factor to be defined shortly.
The spin-averaged square of the matrix element
for ~t~, ~u~ »m' is

(B6)i% i' = 16 —(g,')'O'P(0) .
sp 58 M

The color factor per average color quark in SU(»)
1s

1 1 (n' —1)' 16C=- - = —(for n=3),
&4 n

where our normalization is conventional (see the
text, Sec. IX). Thus

C2

, [g,'4(0)1'

We can now identify

can be directly identified with the nonrelativistic
wave function at the origin. The approximations
are justified as long as the integration over k"
converges. In asymptotic-freedom theories, one
obtains a mild logarithmic divergence" which can
reflect itself in corresponding logarithmic modifi-
cations to the final scaling laws.

We can now calculate the quark-meson scattering
amplitude of Fig. 16 at large momentum transfer.
For a quark of one specific color we have

2

@(p, f)=(m+-,'p' /)-'
,; y.(kP+m)—

&&y,y 0(0)( —2P'-&) '.
[g.'R0) 1',1g' 16

3 4& 97t

i.e. , the dimensional coupling constant g is

(B10)

The quantity

r
y(0) = 2»~, q(~;. )

(2 z)'i
(B4)

a= 4g, 't&(0)(4»)'".

Let us now turn to the form-factor calculation.
In a naive approach one is tempted to obtain the
asymptotic behavior at large ] from the graphs in
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p- I) p-&+q

I'IG. 17. Diagrams for meson form factor at large
momentum transfer in which only one wave function is
i te rated.

JI:I ~ M
p= P+,O~, P ——

4P 4P,

p —l= 1 —xP+, —l~, 1 —xP
4(1 —x)P

yn-+ l~'

4(1 —x)P

(B11)

which only one wave function is iterated (see Fig.
17). However, the x integration in the d'l, '

loop
(x is the light-cone fraction of momentum carried
by the quark struck by the photon) then becomes
singular a.t x-1,

dx
1 —x

a.nd extreme values of the qua. rk momenta are
probed. The wave-function approximation is thus
not applicable for the main loop integration over l.
A ccordingly, we must ite rate the Bethe-Salpete r
kernel once more and calculate the graph of Fig.
18.'-' We shall use the general Lorentz frame (P
is arbitrary) (see, e.g. , Appendix B, Ref. 7)

p

2
p-Ij p+a

2

p+q

FIG. 18. Diagram for meson form factor using the
iternation of the gluon exchange kernel in both Bethe-
Salpeter kernels.

where

D =,'-(1 x)-'[I,'+M'(x)]'

&& ( [ lr'+ (1 —x)qr ]'+M'(x))'

and

M'(x) =—m, ' —x(l —x)M

The trace reduces at large q = -q& = t:

Tr[".]=M'(x)x(1- x)'4fP„,

(B13)

(B14)

16 ' dx vdlr' [g, ii)(0) ]'4x(l —x)'t M'(x)
)) 2(1 —x) (2w)' —,'[f '+M'(x)]'t'

(B15)

where M'(x) is a complicated combination of quark
and meson masses. There are two important re-
gions of the lr integration —lr-0 and lr- —qr(1 —x),
providing an extra factor of 2. Writing K =F(f)
(2p +q ) we obtain at large t

where 7 = —7r', and x= (1,+ l, )/(p, +p, ) is the usual
light- cone/infinite- momentum fraction ca rr.'ed by
the struck quark. The matrix element is

d l Tr[(m+ —,A+ 4()y (m+g+ g)y) (m+g)y
(2 v)4i

( +-,'P')y, ( P+/)y ][)t(0)g, '—]'

x [P(p f)'(l+ q)'p, 'p', '] -'C'. (B12)

Here the color fa.ctor is C'= —"(we sum over col-
3

ors for the form factor). Using standard techni-
ques i.e. , picking up the (p —l)' pole where p, '
==;-' f', p.,-' ==—,'(l + 7)'—the above integral reduces to

16 ' dx d'ft [A0)g,']'»[ ]
o 2(1 —x) (2v)' D

Substituting in terms of g', or rather n„,we have

lF(t) ——"(, ) . (B)6)

Since M'(x)-M'(x), it is clear that the coefficient
of 1/t is of order 0.25 —1.0 GeV' if n„=2 GeV'.
In a monopole fit to data, one has

fE(t) -M' -0.5 (GeV)'.

Clearly, the agreement is acceptable.
In the baryon case where n~ =10, one similarly

can show that the asymptotic behavior of the pro-
ton form factor is also satisfactorily normalized.
The larger va3ue of a~, compared to n~, is re-
quired, in part, in order to compensate the more
strongly damped x integral in the baryon case. One
finds ns fdxx(1 —x)' vs c4„fdxx(1 —x) in the bar-
yon-meson cases, respectively.
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